Publikationen MHG

Die proUmid Feuchtegeneratoren kommen weltweit in hunderten von analytischen Anwendungen zum Einsatz um repräsentative, verlässliche und wiederholbare Messergebnisse in einer Umgebung geregelter Luftfeuchte zu ermöglichen. Hier finden Sie eine Auswahl von Literaturstellen in denen die MHGs zusammen mit analytischen Geräten und Messsystemen für Messungen bei präzise geregelter Luftfeuchte verwendet wurden.

Sie interessieren sich für wissenschaftliche Forschungsergebnisse bei denen unsere Sorptionsprüfsysteme beigetragen haben? Dann klicken Sie hier.

  • TGA/DSC-Feuchtegenerator Kombinationen
    • Mengchun Wu, et al. „Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting.“ Material Horizons 8, 1518-1527, 2021. DOI

    • Jana Stengler „Thermodynamic and kinetic investigations of the SrBr2 hydration and dehydration reactions for thermochemical energy storage and heat transformation.“ Applied Energy 277, 115432, 2020. DOI

    • M Gaeini, et al. „Characterization of potassium carbonate salt hydrate for thermochemical energy storage in buildings.“ Energy and Buildings 196, 178-193, 2019. DOI

    • JX Xu „High energy-density multi-form thermochemical energy storage based on multi-step sorption processes.“ Energy 185, 1131-1142, 2019. DOI

    • Paul A Kallenberger and Michael Fröba „Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix.“ Communications Chemistry 1, 2018. DOI

    • D Lie, et al. „Interactions between a phenolic antioxidant, moisture, peroxide and crosslinking by-products with metal oxide nanoparticles in branched polyethylene.“ Polymer Degradation and Stability 125, 21-32, 2016DOI

    • Anupam Khutia, et al. „Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application.“ Chemistry of Materials 25, 790-798, 2013). DOI

  • Dynamisch Mechanische Analyse
    • Hui Peng, et al. „Creep properties of compression wood fibers.“ Wood Science and Technology 54, 1497-1510, 2020. DOI

  • XRPD-Feuchtegenerator Kopplung
    • Laura Ritterbach and Petra Becker „Temperature and humidity dependent formation of CaSO4·xH2O (x = 0…2) phases.“ Global and Planetary Change 187, 103132, 2020. DOI

    • Murray B McBride „Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.“ Environmental Science: Processes & Impacts 21, 738-747, 2019. DOI

    • Caitlin MA McQueen, et al. „Temperature- and humidity-induced changes in alum-treated wood: a qualitative X-ray diffraction study.“ Heritage Science 6, 2018. DOI

    • Sarah Zellnitz, et al. „Crystallization speed of salbutamol as a function of relative humidity and temperature.“ International Journal of Pharmaceutics 489, 170-176, 2015. DOI

    • Dhara Raijada, et al. „Exploring the Solid-Form Landscape of Pharmaceutical Hydrates: Transformation Pathways of the Sodium Naproxen Anhydrate-Hydrate System.“ Pharmaceutical research 30, 280-289, 2013. DOI

  • Raman-Spektroskopie
    • PAJ Donkers, et al. „Na2SO4·10H2O dehydration in view of thermal storage.“ Chemical Engineering Science 134, 360-366, 2015. DOI

    • Kirsten Linnow, et al. „Experimental Studies of the Mechanism and Kinetics of Hydration Reactions.“ Energy Procedia 48, 394-404, 2014. DOI

  • FTIR-Spektroskopie
    • Lennart Salmén, et al. „Moisture induced straining of the cellulosic microfibril.“ Cellulose 28 , 3347–3357, 2021. DOI

    • Yadong Zhao, et al. „Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans.“ Carbohydrate Polymers 117, 286-296, 2015. DOI

    • Jasna S Stevanic, et al. „Arabinoxylan/nanofibrillated cellulose composite films.“ Journal of Materials Science 47, 6724-6732, 2012. DOI

  • Rasterkraftmikroskopie
    • Qi Chen, et al. „Recovery dynamics of acrylic coating surfaces under elevated relative humidity monitored by atomic force microscopy“ Progress in Organic Coatings 146, 105712, 2020. DOI

Kontaktieren Sie uns noch heute

proUmid ist spezialisiert auf die Herstellung und weltweiten Vertrieb von Systemen zur Messung der Sorptionseigenschaften von Materialien sowie von Feuchtegeneratoren für analytische Anwendungen. Unsere Geräte und Instrumente werden weltweit in einer Vielzahl unterschiedlicher Anwendungen zur Wasserdampfsorption sowie zur Regelung der relativen Feuchtigkeit in Analysegeräten eingesetzt.

Lassen Sie sich beraten –
wir erstellen Ihnen gerne ein individuelles Angebot.

Nicht sicher?
Nutzen Sie unseren Produktfinder

Datenschutz-Einstellungen

Cookie Einstellungen
Diese Website verwendet Cookies die die Ihnen Services ermöglichen, die von externen Anbietern angeboten werden, wie z.B. YouTube oder Google Maps. Rechtsgrundlage ist hier Art. 6 DSGVO (1) a.

Sie können hier der anonymisierten Erfassung Ihres Nutzerverhaltens durch MATOMO widersprechen. Zu diesem Zweck speichern wir einen Cookie auf Ihrem Computer, um diese Entscheidung auch bei späteren Besuche zu respektieren.

Bitte beachten Sie, dass abhängig Ihrer Einstellungen einige Funktionen ggf. nicht zur Verfügung stehen.

Mehr Informationen finden Sie in unserer Datenschutzerklärung

Matomo-Einstellungen

Achtung: Beim Widerspruch des Trackings wird ein Matomo Deaktivierungs-Cookie gesetzt, der sich Ihren Widerspruch merkt.